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A B S T R A C T

We assess the impacts of a range of short-term climate change scenarios (2020–2050) on the hydrology of the
Mara River Basin in East Africa using a new high-resolution (0.25°) daily climate dataset. The scenarios combine
natural climate variability, as captured by a vector autoregressive (VAR) model, with a range of climate trends
calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The methodology
translates these climate scenarios into plausible daily sequences of climate variables utilizing the Agricultural
Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) dataset. The new dataset
(VARAG) has several advantages over traditional general circulation model outputs, such as, the statistical re-
presentation of short-term natural climate variability, availability at a daily time scale and high spatial re-
solution, not requiring additional downscaling, and the use of the AgMERRA data which is bias-corrected ex-
tensively. To assess the associated impacts on basin hydrology, the semi-distributed Variable Infiltration
Capacity (VIC) land-surface model is forced with the climate scenarios, after being calibrated for the study area
using the fine-resolution (0.05°) merged satellite and in-situ observation-based dataset, Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS). The climate data are further bias-corrected by applying a
non-parametric quantile mapping scheme, where the cumulative distribution functions are approximated using
kernel densities. Three different wetness scenarios (dry, average, and wet) are analyzed to see the potential short-
term changes in the basin. We find that the precipitation bias correction is more in effect in the mountainous sub-
basins, one of which also shows the maximum difference between the wet and dry scenario streamflows.
Precipitation, evapotranspiration, and soil moisture show increasing trends mostly during the primary rainy
season, while no trend is found in the corresponding streamflows. The annual values of these variables also do
not change much in the coming three decades. The methodology implemented in this study provides a reliable
range of possibilities which can greatly benefit risk analysis and infrastructure designing, and shows potential to
be applied to other basins.

1. Introduction

Although challenging, the assessment of the hydrological impacts of
climate change is necessary for medium- to long-term water resources
planning and management, design of future adaptation strategies, and
resilience building. Such assessments typically use downscaled global
circulation model (GCM) outputs to drive hydrologic models, under

plausible assumptions regarding different greenhouse gas (GHG)
emission scenarios. In doing so, it is important to consider the potential
sources of uncertainties associated with various components within the
modeling framework; for example, uncertainties in GCM outputs due to
inadequate representation of climate system physics, observational
uncertainties in the evaluation data, process parameterizations, land-
use change, greenhouse gases, aerosol emissions, etc. (Flato et al.,
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2013) or uncertainties in the representation of structural and functional
aspects of the hydrologic system (Allen et al., 2006; Gupta et al., 2012),
and so on.

Further, because the spatial resolution of GCM outputs is typically
too coarse for hydrologic applications, such outputs are often mapped
to higher resolution using statistical or dynamical downscaling (see
recent review by Teutschbein et al. (2011). However, because these
outputs tend to exhibit bias when compared against some “ground
truth”, correction strategies must be applied (see recent review by
Teutschbein and Seibert, 2012). Established methods for bias correction
include quantile mapping or distribution mapping (Panofsky and Brier,
1968; Wood et al., 2002; Snover et al., 2003; Yuan and Wood, 2012),
where the probability distribution of the raw data is mapped to the
reference data.

In addition to the uncertainties associated with GCM outputs, the
time horizons also play a key role in determining the reliability of the
climate model outputs. At shorter time horizons (e.g. decades) the
predictability of atmosphere-ocean system is greatly reduced (Boer and
Lambert, 2008; Teng and Branstator, 2011; Greene et al., 2012). Fur-
thermore, the natural variability of climate contributes substantially to
interannual climate fluctuations, particularly for shorter time horizons
(Greene et al., 2011). Interestingly, from the perspective of water al-
location planning and resources management, the shorter time horizons
are of more immediate relevance (Greene et al., 2012).

The Mara River basin in East Africa has been experiencing high
water demand in recent times, because of which, the available water
resources are often being over-exploited (Dessu et al., 2014). Conse-
quently, effective water resources planning and management, espe-
cially at shorter time horizons, is an indispensable need in the basin.
Decadal forecasts of different hydroclimatic variables are crucial for
addressing the substantial water problems in the basin. To date, only a
very few studies have attempted climate impact assessments for the
basin. Mati et al. (2008) studied the impacts of agricultural expansion
on Mara River streamflow during the 1973–2000 period, and reported
that reduced forest cover has caused flood peak magnitudes to increase.
These changes were accompanied by enhanced upstream soil erosion
and increased downstream build-up of silt. Mango et al. (2011) eval-
uated the potential combined impacts of climate change and land use
change in the upper Mara River basin, and concluded that conversion of
forests to agriculture and grassland is likely to cause peak flows to in-
crease and dry season (June to September, January to February) flows
to decrease, eventually leading to greater water scarcity and hillslope
erosion. Defersha et al. (2012) studied watershed-scale sediment yield
and runoff response, and found (as expected) that cultivated lands have
much higher erosion rates than bush land or grassland. Dessu and
Melesse (2012) used climate projections from five GCMs for three dif-
ferent GHG emission scenarios to assess and characterize the un-
certainty in climate change impacts, and reported that a statistically
significant increase in flow volume can be expected at Mara Mine
(discharge station) from 2046 to 2065 to 2081–2100. Overall, these
studies suggest the following: (1) significant land-use change from
forest to agriculture in the upstream portion of the basin, (2) increased
magnitude of flood peaks, (3) decreased dry season flow, (4) greater
water scarcity, (5) increased upstream soil erosion, and (6) increased
downstream sedimentation.

In this study, we prepare a new climate dataset which combines
natural climate variability with temporal trends resulting from in-
creasing greenhouse gases. Natural variability on the seasonal time
scale is estimated using the vector autoregressive (VAR) modeling-
based approach of Greene et al. (2012), where historical climate ob-
servations are used to fit the parameters of the model, which is subse-
quently used to generate hundreds of plausible, synthetic time series of
natural climate variations in the basin. Seasonal climate trends (pre-
cipitation, maximum, and minimum temperature) are calculated from
an ensemble of 31 models from the Coupled Model Intercomparison
Project Phase 5 (CMIP5, Taylor et al., 2012). These trends are then

imposed on the synthetic time series of natural variability to generate a
full range of plausible seasonal climate change projections for the study
area. Of course, an additional source of uncertainty comes from the
ability of the CMIP5 models to properly capture the response to in-
creasing greenhouse gas concentrations, given known model defi-
ciencies in simulating the current climate of East Africa (Yang et al.,
2014, 2015; Lyon and Vigaud, 2017), which is an important caveat to
keep in mind. Once obtained, the seasonal projections are temporally
disaggregated to the daily time step, making use of the high resolution
(0.25° lat/lon) Agricultural Modern-Era Retrospective Analysis for Re-
search and Applications (AgMERRA) climate data (Ruane et al., 2015).
Hereafter, the derived daily time sequences of climate variables will be
termed as VARAG (VAR approach with AgMERRA). Three different
precipitation scenarios (mean/average, 5th percentile/dry, and 95th
percentile/wet) are then bias-corrected using a nonparametric quantile
mapping scheme with a fine-resolution satellite and in-situ observation-
based merged dataset, Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS; Funk et al., 2014, Funk et al., 2015), as the
reference. The bias-corrected daily climate projections are then used as
forcings to the land-surface model, Variable Infiltration Capacity (VIC;
Liang et al., 1994), which is calibrated using the SCE-UA algorithm
(Duan et al., 1992, Duan et al., 1993), to generate plausible hydro-
logical projections for the basin.

The main objective of this study is to address two main research
questions:

(1) How do the VARAG precipitation scenarios (dry, average, and wet)
compare with the climatology of basin precipitation?

(2) What are the impacts of different short-term/near-term VARAG
precipitation scenarios on basin hydrology?

2. Study area

The 13,504 km2 transboundary Mara River basin (Location: 33°88′E
to 35°90′E & 0°28′S to 1°97′S) has about 65% of its area in Kenya and
35% in Tanzania, Africa. The Nyangores and Amala rivers originate at
the Mau Forest Escarpment (3000m ASL) and merge at the Napuiyapi
swamp (2932m ASL) to create the Mara River, which flows 395 km to
its mouth at the Musoma Bay, Lake Victoria, Tanzania (1130m above
MSL). Being the only perennial river in the region, the Mara River plays
an important role in the ecohydrology of the basin (McClain et al.,
2014).

The climatology of the basin precipitation is bimodal due to sub-
annual translation of the intertropical convergence zone (ITCZ), with
the main rainy season from March to May and the secondary season
from October to November. Long-term mean annual precipitation
varies from 600mm to 1500mm (McClain et al., 2014).

About one million people live in the Mara basin, where the main
socioeconomic activity is crop farming, followed by livestock rearing,
tourism, and wildlife sanctuary (Mati et al., 2005). Due to population
growth and agricultural expansion, the basin has experienced a very
high rate of deforestation, with almost 4500 km2 (approximately one-
third of the basin) having been transformed into farmland and tea
plantations by 2000 (Mati et al., 2005; McClain et al., 2014). The basin
encompasses the Masai-Mara National Reserve (Kenya) and the Seren-
geti National Park along with game reserves (in Tanzania) that attract
thousands of tourists due to the rich biodiversity and the annual mass
migration of millions of animals.

In this study, we focus on the Mara River basin and its five sub-
basins (Fig. 1, Supporting Information Table S1). Two sub-basins in the
northeast encompass the Nyangores and Amala tributaries. Three sub-
basins in the east encompass the Lemek, Talek, and Sand tributaries. All
the five sub-basins drain into the mid region of the basin, referred to as
Mid-Mara. Discharge data are only available at three discharge stations:
Bomet Bridge (Nyangores River), Kapkimolwa Bridge (Amala River),
and Mara Mine (Mara River). Although no ground-based streamflow
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records are available for the other three sub-basins, they play crucial
roles in the water management of the region.

3. Methodology

3.1. Datasets

This study involves multiple datasets at different stages. Climate
change projections for the basin were derived using the University of
East Anglia Climate Research Unit (CRU; Harris et al., 2014) monthly
precipitation and temperature (version TS3.2) data, precipitation pro-
jections from 31 climate models contained in the CMIP5 archive using
the RCP8.5 radiative forcing scenario, and AgMERRA data. The bias
correction of the climate data as well as the calibration of the hydro-
logic mode VIC were carried out using the Climate Hazards Group In-
fraRed Precipitation with Station (CHIRPS) dataset, which combines
both satellite estimates and in-situ measurements. Temperature and
wind speed data for the VIC model calibration were derived from the
National Centers for Environmental Information (NCEI) meteorological
station data archive (formerly known as NCDC: National Climatic Data
Center). The observed streamflow data were collected from the local
water management authority.

3.1.1. AgMERRA climate forcings
The AgMERRA dataset combines NASA’s MERRA reanalyses data

(Rienecker et al., 2011) with in-situ and remotely-sensed observations
of precipitation, temperature, and solar radiation to produce daily high
resolution (0.25°) fields of climate forcing data with significantly re-
duced bias (Ruane et al., 2015) relative to observations from 2324
stations in the Hadley Integrated Surface Dataset (HadISD; Dunn et al.,
2012). The product has been shown to compare well with several
contemporary forcing datasets, including the Princeton Climate Forcing
Dataset (Sheffield et al., 2006), the Water and Global Change (WATCH)
Forcing Dataset (WFD; Weedon et al., 2011), WFD with ERA-Interim
(WFD-EI; Weedon et al., 2011), and the meteorological forcing dataset
the Global Risk Assessment for the Stable Production of Food (GRASP;
Iizumi et al., 2014). Additionally, AgMERRA incorporates the MERRA-
Land dataset (Reichle, 2012), which includes Climate Prediction Cen-
ter’s Unified precipitation product (Chen et al., 2008), resulting in
significantly improved representation of daily precipitation and ex-
treme events. The dataset also incorporates three high resolution sa-
tellite-based precipitation estimates, namely Tropical Rainfall Mea-
suring Mission (TRMM) 3B42 (Huffman et al., 2007), Precipitation

Estimation using Remote-Sensing and Artificial Neural Networks
(PERSIANN; Hsu et al., 1997), and Climate Prediction Center Morphing
Technique (CMORPH; Joyce et al., 2004).

3.1.2. VARAG future climate forcings
In the coming decades, interannual climate fluctuations associated

with natural variability could be a major contributor to hydrologic
variations in many regions around the globe (Greene et al., 2011). Such
natural variations can also affect short-term (e.g. 30-year) climate
trends and thus, projections of near-term climate change. To address
this issue, we follow the methodology of Greene et al. (2012), where we
combine information regarding natural climate variations based on
observational data, with climate model projections used to quantify
trends under increased greenhouse gas forcing.

Fig. 2 shows the main steps involved in the data preparation tech-
nique. The first step was to extract seasonal average CRU precipitation
data along with maximum and minimum temperature data
(1901–2013) for a rectangular region (2.5°S-0°N, 33.5°E-36.5°E) that
includes the Mara Basin. Only the wet seasons of March-May and Oc-
tober-December were used in the VAR model. The three variables were
then regressed onto the global average surface temperature time series
obtained from the average of 31 CMIP5 climate model simulations that
include increasing greenhouse gases, and therefore constitute the an-
thropogenic signal. The regressed relationships were used to de-trend
the original CRU time series data (they are subtracted from the original
data), generating residual values for each variable that constitute nat-
ural climate variability. The detrended time series (seasonal precipita-
tion and maximum and minimum temperature) were then used to fit
the parameters of the VAR model that captures both the autocorrelation
of each of the three variables as well as the covariance among them.

Once the model parameters were determined, the VAR model was
used to generate 200, synthetic climate scenario time series consisting
of seasonal average values 31 years in length (representing
2020–2050). Linear trends from 2020 to 2050 in the three variables
were then computed for the region based on 31 CMIP5 model projec-
tions run under the RCP8.5 scenario representing extreme greenhouse
gas emissions (Riahi et al., 2011). From the 31 computed trends, the
four representing the mean, 5th, 50th, and 95th percentile values were
selected. These four trend scenarios were then superimposed on each of
the 200 synthetic climate simulations to generate what is considered
the full range of plausible climate change projections for the basin
(trend from CMIP5 and natural variability from the VAR). For each of
these four sets of 200 scenarios, the seasonal precipitation averaged

Fig. 1. (a) The Mara River basin and its sub-basins. Watershed outlets are shown in blue. All other outlets except Mara Mine are located in Kenya, while the latter is
located in Tanzania. (b) The climatology of precipitation (Raingauge at Kericho near Nyangores sub-basin) and streamflow (Discharge station at Bomet Bridge in
Nyangores sub-basin). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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over the period 2020–2050 was determined for each set, and the mean,
5th, 50th and 95th percentile values were identified. For example, in
the case of the 5th percentile trend imposed from CMIP5, the 5th per-
centile of seasonal mean rainfall for 2020–2050 was selected from the
200 superimposed time series. The purpose of this was to capture how
natural variability can either enhance or reduce the imposed trend just
by chance. As the historical March-May and October-December rainfall
seasons in the Mara Basin do not show a statistically significant re-
lationship to one another, climate scenarios for the March-May and
October-December seasons were computed separately in our approach.
These seasons were subsequently concatenated with the intervening dry
seasons (January-February, June-September), where the dry seasons for
an individual year was chosen randomly from the AgMERRA data. The
seasonal temperature trends from the CMIP5 model projections were
added to the temperature time series from VAR for all seasons (i.e.
including the dry seasons). Thus, we derived 31-year climate projec-
tions for the Mara Basin covering the period 2020–2050 based on the
seasonal data.

To disaggregate the synthetic seasonal climate scenarios down to
plausible daily weather sequences, a k-nearest neighbor approach was
employed. Using all three scenario variables (precipitation, maximum,
and minimum temperature) for a given season and year, the three-
nearest neighbors in seasonal averages of the AgMERRA data were
identified. To add a stochastic element, a single nearest neighbor was
chosen from the three using a random process with unequal weighting,
with the largest weighting applied to the first nearest neighbor. The
difference in seasonal temperature between the scenario value and
AgMERRA nearest neighbor was then computed for each season of each
year. For precipitation, the ratio of the two precipitation values was
computed. The daily AgMERRA values, for each identified season and
year and for each grid point within the Mara Basin, then served as a
plausible daily sequence within the season. To have the AgMERRA data
exactly match that of the seasonal value of the climate scenario, the
difference (between seasonal scenario and AgMERRA) in seasonal
maximum and minimum temperature was added to each daily
AgMERRA value, while for precipitation, multiplicative adjustment was
used. The end result was a sequence of daily forcing values covering the

period 1 January 2020 to 31 December 2050 for four different wetness
scenarios (mean and the 5th, 50th, 95th percentiles).

3.1.3. CHIRPS precipitation
The Climate Hazards Group InfraRed Precipitation with Station data

(CHIRPS; Funk et al., 2014, Funk et al., 2015) is a satellite-based quasi-
global (50° N-S, 180° W-E) merged precipitation dataset available from
1981 to near-present (∼1month latency). CHIRPS incorporates in-
formation from five different sources; (1) pentadally (5-day) dis-
aggregated monthly precipitation climatology (CHPClim), (2) quasi-
global geostationary thermal-IR satellite observations from two NOAA
sources (CPC IR & NCDC B1 IR), (3) TRMM-3B42 precipitation esti-
mates, (4) precipitation fields from NOAA Climate Forecast System,
version 2 (CFSv2), and (5) in-situ precipitation observations both from
national and regional sources (CHG Station Climatology Database,
UCSB). The latest version of CHIRPS (version 2) with 0.05°× 0.05°
spatial and daily temporal resolutions is used in this study.

As per the CHIRPS algorithm, cold cloud top (< 235° K) duration is
calculated first as the percent of pentad, i.e., the percent of time during
the pentad that corresponds to the cold could top. Then, predetermined
local regression equations based on TRMM 3B42 pentad rainfall esti-
mates are used to convert this duration into mm of precipitation. The
percent of normal pentad precipitation is calculated by dividing the
pentad values by their long-term means, which is then multiplied by the
Climate Hazards Group's Precipitation Climatology (CHPClim) pentad
to produce unbiased gridded precipitation estimates. Finally, for each
grid location, five nearest station observations are assimilated using
weights that are proportional to the square of the correlation coeffi-
cients, thereby producing the CHIRPS estimates.

3.1.4. Station Data: temperature, wind speed, and discharge
The Global Surface Summary of the Day (GSOD) products produced

by the National Climatic Data Center (NCDC) in Asheville, NC (cur-
rently a part of NCEI), are used in this study as the in-situ observations
of precipitation, temperature (maximum, minimum, and average), and
wind speed. Six of the total available stations had relatively good
coverage and so they were used for this study. Discharge data were
available for three sub-basins out of six (Nyangores at Bomet Bridge,
Amala at Kapkimolwa, and Mara at Mara Mine) with different temporal
coverages (see Supporting Information Table S2). Streamflow values
are based on calibrated stage-discharge relationships fed with stage
measurements. The uncertainty in the stage to discharge transformation
was not accounted for in this study.

3.2. Hydrologic model VIC

The VIC model (Liang et al., 1994) is a physically-based semi-dis-
tributed hydrologic model that can solve both water and energy budget
equations simultaneously; for this study, the model was run in water
budget mode at a daily time step and a 0.05° spatial resolution. In-
dependent calculations are carried out at each grid cell, and the model
accounts for sub-grid heterogeneity in a statistical manner. VIC requires
that at least four inputs be provided (precipitation, maximum air
temperature, minimum air temperature, and wind speed) and, unless
provided explicitly, all other required variables are derived within the
model from these four inputs (see Supporting Information Table S3).
The model consists of three soil layers and a thin canopy layer on the
top. Horizontal routing within the model is a two-step process. First, the
runoff from each grid cell is routed from that cell to the channel using a
triangular unit hydrograph. Second, the water in the channel is routed
to the outlet using the linearized St. Venant's equations (Lohmann et al.,
1996, Lohmann et al., 1998). Six parameters of the model were cali-
brated in this study (see Supporting Information Table S4); these are the
ones suggested by the developers as being the most sensitive (In-
formation retrieved from:

www.hydro.washington.edu/Lettenmaier/Models/VIC/

Fig. 2. VARAG preparation flow chart.
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Documentation/Calibration.shtml#General.Last accessed: Sept 18,
2018).

3.3. Model calibration

Discharge data from the three gauge stations (Bomet, Kapkimolwa,
and Mara Mine) did not share a common time frame (Supporting
Information Table S2). Therefore, to make the best use of the available
data, step-wise calibration was performed using different calibration
and evaluation periods for each sub-basin. Calibration was carried out
individually using distributed forcing, and the same calibrated para-
meters were applied in all grid cells. The Nyangores and Amala sub-
basins were calibrated first individually for their respective outlet
points at Bomet and Kapkimolwa. Next, the Mara basin was calibrated
using the discharge data from the outlet point at Mara Mine. The final
parameter file was prepared by combining the three different sets of
parameters corresponding to Nyangores, Amala, and Mara. The Shuf-
fled Complex Evolution-University of Arizona (SCE-UA; Duan et al.,
1992, Duan et al., 1993) optimization algorithm was used for cali-
brating the model parameters at a daily time step using CHIRPS as the
precipitation forcing. The mean squared error of the transformed (Box
and Cox, 1964) flows was used as the objective function to be mini-
mized. The λ -parameter of the transformation equation was calculated
from the observed streamflow values such that it minimizes the skew-
ness (Roy et al., 2017a, 2017b). For the ungauged sub-basins (Lemek,
Talek, and Sand), calibrated parameters of the Mara basin were im-
plemented. Note that the quality of streamflow observations was not up
to the mark for Kapkimolwa Bridge and Mara Mine stations, however,
we still wanted to utilize all the resources we had at our disposal. Ca-
libration in the λ -transformed space is particularly useful in this case in
order to capture the mean behavior of the observed streamflow time
series. This does, however, deteriorate the error statistics. For Bomet
Bridge, although the observed hydrograph was captured well by the
VIC model, there were few instances of high peaks in the simulated
flows, which again deteriorated the error statistics. Calibration results
are presented in Supporting Information Table S5.

3.4. Precipitation bias correction

Bias correction of VARAG raw precipitation data was carried at a
monthly time scale on a cell-to-cell basis using adjusted CHIRPS as the
reference data. The correction scheme followed two steps. First, raw
CHIRPS data were slightly adjusted in a lumped manner to match the
long-term means of the local National Climatic Data Center (NCDC) rain
gauges (see methodology in Roy et al., 2017b). Second, cell-to-cell
distributed correction was carried out using a nonparametric quantile
mapping approach, where the cumulative distribution functions (CDFs)
were approximated by kernel densities. Although the applications of
kernel densities are widespread (Rosenblatt, 1956; Silverman, 1981;
Sheather and Jones, 1991; Kim et al., 2003), they have not been used
widely within the context of quantile mapping-based bias correction. In
this method, the probability distributions of the raw and the reference
data are approximated by Kernel Densities, which helps overcome
several weaknesses associated with the use of purely empirical dis-
tributions (e.g. lack of smoothness) or theoretical distributions (e.g.
frequent over-smoothing).

Quantile mapping is used to match the distribution quantiles of the
raw data (RW) to that of the reference data (RF), thereby producing the
bias-corrected data (BC), with statistical properties similar to the re-
ference data. Mathematically, this can be shown as:

= −BC F F RW( ( ))RF RW
1 (1)

where FRW is the CDF of the raw data and −FRF
1 is the inverse CDF of the

reference data.
The CDFs of raw and reference data are approximated using kernel

density functions, which can be expressed as:

∑= ⎛
⎝
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f x
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where f x( ) is the estimated density at point x, xi is the sample point at
ith location, n is the total number of sample points, K is the kernel, and b
is the bandwidth.

The kernel function represents the influence of adjacent points
based on their distance from the evaluation point. As this distance in-
creases, the associated weight decreases. Thus, any sample point
probability is characterized by not only the probability at that point,
but also by the probability associated with the neighboring points in a
continuously decreasing manner (with distance away from the eva-
luation point) using some kernel function (e.g. triangular, Gaussian,
etc.). The bandwidth in kernel density estimation controls the bias-
variance trade-off. If the bandwidth is too small, the kernel densities
overfit the data, i.e., the variance increases. On the contrary, if the
bandwidth is too large, the kernel densities underfit the data, which
means that the bias is increased. Here, the bandwidth was adjusted
manually. To implement the nonparametric quantile mapping scheme,
we used 1D interpolation with nearest neighborhood smoothing on the
precipitation values and the cumulative probabilities.

Bias correction of VARAG raw precipitation was carried out on a
monthly time-scale, following which, the bias-corrected monthly values
were temporally disaggregated to daily level based on precipitation
intensities, with the implicit assumption that higher rainfall intensities
are associated with larger bias and vice versa. The correction was not
implemented on a daily level because the reference CHIRPS data are
produced from pentad climatologies, which do not accurately represent
the daily variability of precipitation.

4. Results and discussion

4.1. Precipitation characteristics

The comparison between the basin-averaged mean monthly pre-
cipitation from AgMERRA and CHIRPS for the time period 1981–2010
(common time frame) for all six sub-basins is shown in Fig. 3. For each
case, it also reports the “bias factor”, i.e., the ratio between the long-
term means of CHIRPS (reference) and AgMERRA (raw). Bias factors
greater than one imply underestimation (in long-term) of AgMERRA
and vice versa. As can be seen, the type of bias varies with the case.
AgMERRA significantly underestimates precipitation in the mountai-
nous Nyangores and Amala sub-basins, shows slight underestimation
for the Mid-Mara region and Sand sub-basin, and slight overestimation
for the Talek and Lemek. This is also evident in the empirical CDF plots,
where the upper two sub-basins show significant differences (under-
estimation of AgMERRA), whereas the remaining four sub-basins have
very similar probability distribution characteristics.

Next, we compared future precipitation from raw VARAG against
historical CHIRPS (Supporting Information Fig. S1) to see whether or
not VARAG precipitation is significantly different from AgMERRA
precipitation, and if CHIRPS could at all be used as the reference data.
We found that the AgMERRA and VARAG precipitation have very si-
milar mean bias and distribution characteristics, which is also the
reason why CHIRPS was finalized for bias-correcting the future data.

Fig. 4 shows monthly precipitation distributions and means for (1)
basin-averaged rain gauge measurements, (2) CHIRPS precipitation, (3)
AgMERRA precipitation, and (4) average wetness VARAG precipitation.
As can be seen, the bimodality of Mara rainfall is well represented in all
four datasets. The primary rainy season is during March-May and the
secondary during October-December. VARAG precipitation has less
spread, overall. The plot in the last row shows monthly bias factors
corresponding to CHIRPS, AgMERRA, and VARAG, calculated using the
rain gauge measurements as the reference (Bias Factor=Reference/
Raw). All three products have similar temporal patterns for the bias
factor, with AgMERRA and VARAG having the closest match. Overall,

T. Roy et al. Journal of Hydrology 566 (2018) 818–829

822

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/Calibration.shtml#General.Last


Fig. 3. Monthly precipitation time series (1980–2010) and empirical CDF for the six Mara sub-basins as computed from CHIRPS and AgMERRA. The Bias Factor
indicates the ratio between the long-term means of CHIRPS (reference) and AgMERRA (raw).

Fig. 4. Comparison of monthly precipitation distributions and means of basin-averaged rain gauge measurements, CHIRPS, AgMERRA, and VARAG.
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the bias factor values are closer to 1 during the rainy seasons, and
higher during the dry periods, which means, on an average, the dry
period precipitation is underestimated by AgMERRA, assuming that the
rain gauge measurements during those periods are reasonably accurate.
Similar behavior is expected in the future, as demonstrated in VARAG,
if we assume stationarity, since the statistical properties are not ex-
pected to change significantly within the short time period. It is im-
portant to note that the assumption of stationarity is only meaningful
when short-term analysis is concerned. For analysis in longer time
scales, treatment of nonstationarity becomes crucial.

4.2. Precipitation bias correction

Since the probability distributions of monthly AgMERRA and
VARAG precipitation were quite similar (see Fig. 3 and Supporting
Information Fig. S1), the bias correction method was first tested with
the AgMERRA data for historical time period (1981–2010) to see how
closely the bias-corrected values match the reference data (i.e. gauge-
adjusted CHIRPS). Bias correction results for four different grid cells
from different parts of the Mara River basin are shown in Supporting
Information Fig. S2, where the type of bias (whether underestimation or
overestimation) is not consistent across the grid cells. The sorted values
closely follow the 45° line, indicating that the bias correction has been
successful. Fig. 5 presents the bias correction results for the historical
time period for the entire study area. Clearly, bias correction scheme
has successfully matched all the four moments (mean, standard devia-
tion, skewness, and kurtosis) of the raw monthly AgMERRA data to that
of the gauge-adjusted CHIRPS. Note that the use of kernel density
functions and the careful selection of the bandwidth value are the key
reasons why bias correction has been so efficient in this case. Bias
correction results (similar to Fig. 5) of VARAG precipitation are shown
in Supporting Information Fig. S3.

4.3. Precipitation projections

Three different future precipitation scenarios (dry, average, and

wet) are studied with and without the bias correction (Fig. 6). Assuming
that the reference CHIRPS corresponds to average wetness condition,
we only bias-correct the average scenario of VARAG. The anomalies of
dry and wet scenarios are calculated by subtracting them from the raw
means, which are then added back to the corrected means to get the
corrected dry and wet scenarios. The negative values produced thereby
are all set to zero. Thus, we can have three different scenarios, both
before and after the bias correction, which would not be possible had
we been bias-correcting all three scenarios directly, because in that
case, the bias correction algorithm would consider dryness and wetness
as biases and tend to ‘correct’ them such that they match the mean
scenario. This method implicitly assumes that the magnitude of the bias
during average wetness conditions is equal during wet and dry condi-
tions.

The accumulated precipitation plots shown in Fig. 6 are useful to
detect (1) differences in total precipitation at the end of the analysis
period and (2) any drastic change in precipitation over time as reflected
by the slope of the curves. As can be seen, none of the six sub-basins
showed a noticeable change in the slopes for the different scenarios.
Therefore, no drastic change in precipitation is expected in the next
three decades. Differences between the dry and wet scenario pre-
cipitation at the end of the time period are similar for all six sub-basins,
whereas in case of streamflow, these differences are maximum for the
mountainous sub-basins. Difference between the dry and wet pre-
cipitation scenarios was maximum in the overall basin (199mm) fol-
lowed by the Lemek sub-basin (164mm), and minimum for the Amala
sub-basin (130mm). The effect of bias correction is marginal for Lemek
and Talek, where the bias factors are lower than but very close to 1
(0.93 and 0.94, respectively). The slope of the bias-corrected pre-
cipitation is always higher for all sub-basins. For Lemek and Talek,
again, the increase in slope after bias correction is marginal.

4.4. Hydrologic projections

Hydrologic simulations are carried out for three consecutive dec-
ades (2021–2030, 2031–2040, and 2041–2050) using the calibrated

Fig. 5. Spatial plots showing the statistical moments of raw, reference, and bias-corrected monthly AgMERRA precipitation data during the historical period
(1981–2010).
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VIC model, with both raw and bias-corrected future climate precipita-
tion projections, to also study the effects of bias correction. Other
variables (maximum temperature, minimum temperature, and wind
speed) are used directly from VARAG without any adjustment. With this
hydrologic modeling exercise, we want to assess the impacts of short-
term/near-term climate change on the hydrology of the Mara River
basin. Note that the AgMERRA data used for other variables within the
VARAG dataset are already bias-corrected extensively (see Ruane et al.,
2015), and therefore their use in the hydrologic model is justified.
Future work will focus on bias correcting those variables as well to see
if performance could be improved. In this study, we had a reliable re-
ference dataset for precipitation (CHIRPS), which we used to bias-cor-
rect the main driver of the hydrologic model, i.e. precipitation.

The average yearly difference between the wet and the dry scenario
streamflows was maximum (141mm) for the Nyangores sub-basin,
whereas the minimum difference was found in case of the Sand sub-
basin (92mm). In terms of ET, the maximum difference was found in
the overall basin (101mm) followed by the Talek sub-basin (89mm),
and the minimum in the Amala sub-basins (61mm).

The effects of bias correction are more prominent for Nyangores and
Amala (Figs. 6 and 7). For all three scenarios, VIC simulates stream-
flows of higher magnitude after the bias correction for these two sub-
basins. This behavior is expected, since the corresponding bias factors
are also higher (see Supporting Information Fig. S1), meaning that the
bias-corrected precipitation would be higher in terms of magnitude as

compared to the raw precipitation. The next noticeable change in
streamflow is found in case of the Sand sub-basin, which lies in the
southern part of the Mara River basin. In this case, the streamflow
magnitude increases slightly when the bias-corrected precipitation is
used. Streamflow changes are not significant in Lemek and Talek sub-
basins.

For the two mountainous sub-basins (Nyangores and Amala), VIC
simulation results show that the streamflows for both average and wet
scenarios will be very similar (Fig. 6). In other words, streamflow
magnitude will be higher, which happens in the expense of ET, since the
simulated ET in the average scenario is close to the simulated ET from
the dry scenario (lower magnitude). The cumulative distributions of
streamflows corresponding to the historical CHIRPS and three VARAG
wetness scenarios are shown in Supporting Information Fig. S4.

The distributions of daily precipitation, ET, and streamflow appear
to be quite similar in the three successive decades considered in this
study (Supporting Information Fig. S5). Although the outliers show
some differences, the median and the interquartile range do not change
significantly. This is indicative of the fact that at shorter time scales,
natural variability of climate can obscure climate change signals.

Being a scenario-based dataset, VARAG shows how different wet-
ness conditions might look like in the future. Thus, Fig. 6 gives us a
sense of uncertainty in different hydrologic variables based on the
wetness scenarios. Note that since the wetness scenarios are based on
seasonal values, after disaggregation using AgMERRA, it is possible to

Fig. 6. Accumulated precipitation (m) over the future analysis period (2020–2050) for raw (Raw) and bias-corrected (Cor) scenarios: mean (Avg), 5th percentile
(Dry) and 95th percentile (Wet). Bias correction is implemented on the mean scenarios. The anomalies of the dry and wet scenarios are calculated from the raw mean
and then added back to the corrected mean to get the corrected dry and wet scenarios.
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have situations where a daily value from the dry scenario is actually
higher than the wet scenario. Therefore, the VARAG scenarios cannot
be used directly in the hydrologic model to calculate the corresponding
daily streamflow percentiles.

4.5. Trend analysis

Mann-Kendall test at 5% significance level was performed on pre-
cipitation, ET, and streamflow during the wet seasons (March-May and
October-December) for all three bias-corrected wetness scenarios in the
basin. For precipitation, the complete time period (2020–2050) was
considered, whereas for ET and streamflows, 2020 was excluded in
order to remove the effects of model spin-up.

Except for Sand, the total primary rainy season precipitation
(March-May total) showed statistically significant increasing trends for
the average wetness scenario in all cases, whereas the same scenario did
not show any significant trend for the secondary rainy season (October-
December total). The dry and wet scenarios did not show significant
trends in any of the sub-basins for either of the rainy seasons.
Streamflow did not show any statistically significant trend for any of
the rainy seasons and wetness scenarios in any of the sub-basins. For the
average wetness scenario, increasing trends in ET were found in all cases
expect for Sand during the primary rainy season, and in Mara and
Lemek during the secondary rainy season. The wet scenario did not
show any statistically significant trend in ET, whereas, the dry scenario
showed positive trend during the primary rainy season in Nyangores

and Amala. Soil moisture showed statistically significant increasing
trends during the primary rainy season in both the average and wet
scenarios for Mara, Nyangores, and Amala (additionally for Lemek in
the average scenario). However, no statistically significant trend was
found in any of the wetness scenarios for annual precipitation, ET,
streamflow, and soil moisture, in any of the sub-basins while tem-
perature (both minimum and maximum) showed statistically significant
positive annual trends for all the sub-basins. Thus, even with projected
increases in seasonal rainfall in some sub-basins and wetness scenarios,
they are found to have little influence on the overall hydrology of the
basin relative to the current climate when viewed on an annual basis.
Increasing ET on an annual time scale (even though the trends are not
statistically significant, they are still positive) acts to reduce the runoff,
which might not show decreasing trends since the precipitation is also
increasing. On subseasonal time scales, increasing temperatures will
serve to exacerbate dry conditions when they do occur, even if only
driven by natural variability.

We also carried out a comparison between the raw and the bias
corrected VARAG precipitation for all three scenarios to see if bias
correction is affecting the trend signals in the raw data. It was found
that, overall, bias correction did not alter much the temporal trends of
the raw data.

4.6. Streamflow uncertainty

Information about streamflow uncertainty is crucial for hydrologic

Fig. 7. Empirical cumulative distribution plots of monthly precipitation, evapotranspiration, and streamflows (mm) for different input precipitation scenarios
(Dry=5th percentile; Avg=mean; Wet= 95th percentile) before and after bias correction.
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designs and applications, however, it is almost impossible to get a
“true” estimate of uncertainty for the future, simply because we are not
certain about how the future would look like in reality. The estimated
uncertainties are rather subjective, oftentimes very sensitive to the
approach implemented for their estimation. If sufficient computational
resources are available, one could calculate an ensemble of streamflow
projections, however, the uncertainty thereof (given by the ensemble
spread) will be solely based on how good the ensemble members are.
Clearly, this approach does not account for the actual errors. Moreover,
the uncertainty estimates will change further depending on how the
ensemble is generated. An alternative approach to ensemble based
uncertainty is to use the historical errors and superimpose them on the
future values. The error superimposition can be done for different time
scales. In case of daily streamflows, the errors from the entire historical
time period could be superimposed on the daily values of the future
streamflows. Alternatively, historical errors can be separated into
months or even days and the superimposition can be carried out for the
corresponding months or days. An important aspect of error calculation
is the effect of skewness. In highly skewed variables, such as pre-
cipitation or streamflow, the skewness would impact the errors.
Therefore, it is important to remove the skewness from the variables
before calculating the errors. The error superimposition can be carried
out in the transformed space (skewness is reduced), and the resulting
streamflow values can then be transferred back to the original space.
For long-term assessment, nonstationarity could be an unavoidable
issue, in which case, the errors calculated in the past will be irrelevant
for the future.

In this study, we first checked if the standard deviations of the daily
streamflow errors changed much in the past for each month. Although
there were changes evident, it was difficult to find common patterns.
Furthermore, it is also problematic to extrapolate the trend line of the
historical standard deviations to derive standard deviations for the fu-
ture, simply because we do not know how that change (whether linear,
exponential, etc.) would be in reality. Therefore, in this study, we as-
sumed the streamflow error distributions to be stationary, which is a
reasonable assumption, given that our focus is on short-term impacts
assessment. Next, we removed the skewness using the Box-Cox trans-
formation, where the “lambda parameter” was calculated such that the
skewness was minimized (Roy et al., 2017a, 2017b). We then applied
three variations of the error superimposition approach. In Method-1, we
superimposed monthly errors, in Method-2, daily error values were
used, and finally in Method-3, we applied bootstrapping on the daily
errors (Fig. 8). Note that in Method-2 and Method-3, daily error dis-
tributions were sparse. For example, in Nyangores River basin, we had
14 years of historical records, resulting in only 14 error values for each
day of the year. In most cases, the errors did not have zero-mean.
Therefore, we forced the mean to be zero for daily errors to ensure that
we capture only the error variance and no artificial bias is introduced in
the process. Additionally, in Method-3, instead of regular boot-
strapping, we implemented balanced bootstrapping, where the differ-
ence between the observation mean and the mean of the bootstrapped
sample means are added to the latter to remove the bias.

Note that out of the six sub-basins within the main Mara basin, only
three had streamflow observations, with the Nyangores River basin
(Station: Bomet Bridge) having the best quality data. Therefore, we
demonstrate the streamflow uncertainty analysis for this sub-basin
only. For the ungauged basins, an ad-hoc approach of uncertainty
characterization would be to use bootstrapped confidence intervals
calculated from the daily values in each season. Out of the three
methods presented, we recommend the use of Method-1 since it yields
to more robust estimates of the uncertainty as the distributions are not
sparse in this case, and also, there is no need for forcing the error means
to be zero. Method-3 produces the narrowest bounds, however, these
are not necessarily more realistic as compared to the more conservative
bounds from Method-1. It is important to note that the three wetness
scenarios themselves provide a sense of the extreme and mean

hydrologic behavior of the basins. The error superimposition, adds an
additional layer of uncertainty on the scenarios.

5. Summary and concluding remarks

In this study, we evaluate the potential impacts of short-term (3
decades) climate change on the hydrology of the Mara River basin and
its sub-basins in East Africa. Predictability of climate is reduced sig-
nificantly at such short time span, due to the inherent natural varia-
bility. On the other hand, it is oftentimes more relevant to assess the
impacts of short-term climate change for water resources management
and infrastructure designing. In this study, we capture the natural
variability of climate using a statistical model (VAR) and derive daily
scenario values based on the AgMERRA data. We bias-correct the new
data (VARAG) using the satellite and observation-based merged dataset
CHIRPS, and use it as input to the land-surface model VIC to investigate
the hydrological impacts. We particularly focus on three different sce-
narios, representing the mean (avergae), dry (5th percentile), and wet
(95th percentile) conditions.

VARAG and AgMERRA have very similar mean bias and distribution
characteristics, and they also (along with CHIRPS) well capture the
climatology of the bimodal precipitation in the Mara River basin. The
bias factors (ratio between reference and raw data) calculated in this
study are higher (> 1 indicates underestimation) over the mountainous
sub-basins of the north (Nyangores and Amala), agreeing with similar
findings about the underestimation of satellite-based precipitation es-
timates over the mountainous regions (Gebremichael et al., 2014).
Therefore, bias correction was more in effect in these two sub-basins.
The bias correction method implemented in this study (using kernel
densities) successfully matched all four distributional moments of the
raw data to that of the reference data. Moreover, it did not alter much
the temporal trends of the raw data.

Seasonal trend analysis revealed that the increasing trends in pre-
cipitation during the primary rainy season will lead to more water
availability, which will not only increase soil moisture but also ET, with
the latter also be driven by increasing temperatures. Annually, there is
no substantial increase in precipitation in the next three decades as
shown by the VARAG data (CMIP5 model outputs combined with nat-
ural variability), which relates to the frequent drought events in the
region. Another implication of these results could be that the primary
rainy season in the sub-basins (for most of them) will have more rain,
however, since the overall annual precipitation is not changing much,
this could lead to higher peak flows during the rainy seasons (not ne-
cessarily increased total flow) and more dryness during the non-rainy
seasons, which have been suggested in some recent studies (e.g. Mati
et al., 2008; Mango et al., 2011).

It should be noted that in our study approach, projected rainfall
trends from the CMIP5 models are for seasonal totals that are super-
imposed on natural variability on this time scale and subsequently
disaggregated to daily sequences using the AgMERRA dataset. As such,
we do not explicitly examine changes in daily extreme events within the
CMIP5 models, although seasonal rainfall trends will influence the
magnitude of daily totals, including extremes, in our approach. Our
methodology assumes that in the near term (10–30 years), climate
variability will be very similar to that of the present climate, which may
not be a suitable assumption on longer timescales under increasing
greenhouse gas forcing. Given this, our methodology is not ideal for the
analysis of daily rainfall trends. The strength of the VAR approach is to
allow for the generation of thousands of plausible future climate sce-
narios, enabling us to build probability distributions of projected cli-
mate change that include the important role of unforced climate
variability on near term trends.
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